
IDENTIFYING AND
MANAGING
TECHNICAL DEBT



78% of developers agree 
that maintenance of legacy systems and technical debt 

have a significant impact on their personal morale. 
Source: The Developer Coefficient, Stripe, 2018

Technical debt has been a phenomenon since the first mainframe punchcard. However, with our
economy being dominated by businesses viewing themselves as “software companies” (and with
“product development” referring to software more often than any durable good), an increasingly
broad set of stakeholders feel the effects of technical debt.

Combine that with this decade’s current and impending Great Resignation—where widespread
turnover is primed to occur due to employee burnout and dissatisfaction in their companies’ ability to
handle the next crisis. Managing software teams’ time efficiently and helping them avoid redundant,
unnecessary work becomes not only a best practice, but an important advantage in attracting and
retaining top talent.

WHAT IS TECHNICAL DEBT?

Ward Cunningham, hugely influential computer scientist and co-creator of Extreme Programming,
coined the term “technical debt” nearly three decades ago: 

“Shipping first-time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with a rewrite… The danger occurs when the debt is not

repaid. Every minute spent on not-quite-right code counts as interest on that debt.
Entire engineering organizations can be brought to a stand-still under the debt load of

an unconsolidated implementation.”

In more pragmatic terms, technical debt can be defined as quick, dirty, or otherwise inadvisable
development that leads to more work later. This work becomes more and more critical as time wears
on so that the shortcuts taken won’t lead to bugs or make future changes hard to implement. 



THE FOLLOWING ARE SOME CLASSIC TECHNICAL DEBT SMELLS:

Simple Functional Changes or Additions Take a Long Time
For instance, you have determined that you need to add a “salutation” and “suffix” field to
your CRM application and your development team greets you with pained looks and/or
racks several days of work to make the change. The amount of work to unpack and
remediate debt-ridden logic while building out your additions is adding major unexpected
cost to your project.

Bug Fixes Take a Long Time
A problem comes in from the field that your web application is rendering a key page in poor
form on smartphones. The bug takes three days to remedy, your team is putting in late
hours to get it fixed, and senior development staff is called in to assist.

Code Changes for Small Additions Frequently Lead to Bugs
During the addition of the “salutation” and “suffix” fields to your CRM application, three
reports break and the data update feature breaks. Seemingly unrelated features regress to
broken states for no apparent reason.

Developers Actively Avoid Being Assigned to the Code
Your development team actively avoids being assigned to the team working on your apps.
Word spreads quickly among the corps when an app’s technical debt has grown out of
control and soon it will be difficult to get your developers of choice to voluntarily work on
your app.

TECHNICAL DEBT SMELLS

As a technical manager, product manager, or Agile product owner, how can you get a feel for the
level of technical debt in your digital products? How can you gauge whether technical debt is
increasing or decreasing? 

Kent Beck coined the term “code smell” as a surface-level indication (in other words, you’re likely to
notice it if you’re near it) that usually corresponds to a deeper problem with the code. Just as food
that smells a little funny might not guarantee that it is spoiled, code smells are usually not as obvious
as outright bugs, but if you’re tuned in you’ll definitely notice them. 



WHAT CAUSES TECHNICAL DEBT?

While it may appear that technical debt is most often a result of developer carelessness or ignorance,
the fact of the matter is that the situation is much more nuanced. Holding such a viewpoint would be
like blaming the automotive assembly line worker for your car’s oil changes and brake pad
replacement: certainly a car could be built that would not require that maintenance, but the cost
would be so high no one would buy such a car.

It helps to understand the different types of technical debt, each of which have their own likely set of
causes:

NAÏVE, RECKLESS, OR UNINTENTIONAL TECHNICAL DEBT 
These are different names for a form of technical debt that accrues due to irresponsible behavior
or immature practices on the part of the people involved. In our experience it is very rare to find
this kind of technical debt stemming from conscious irresponsible development behavior: no one
intentionally sets out to write faulty or sloppy code. However, it is very common to find this kind
of debt originating from developers not trained in current and robust development techniques. It
can also arise when little architectural planning has taken place or the toolchain the development
team uses is immature.

The truth is that not all teams are equipped or prepared to
consider the implications of technical debt. A lack of
understanding of DevOps principles and process results in
unintentional fallout. The technical debt experienced here comes
from isolated work efforts where teams don’t collaborate and
share knowledge effectively, inexperienced development staff on
teams without a strong mentorship culture, or uncoordinated
outsourced teams.

LIKELY CAUSE

Any of the above sound familiar? If so, it’s probably time to dig deeper and involve technical staff to
evaluate your software for the presence of technical debt.

The Application Slows Down
You use your app for day-to-day work and the slowdown from how it worked a year ago is
palpable. Technical debt has a way of gumming up the works in an application. Workarounds
mount in your backlog and inefficient legacy code dominates the application, bringing it to a
crawl.



This type of technical debt can manifest in development practices
that are out of touch with modern DevOps practices that prioritize
ease of scaling. One example is choosing to hard code the options
in a select list when the end user may want to be able to add
options to it in a dynamic fashion. Choices like tight code coupling
and lack of modular components mean that the software is not
flexible enough to adapt to changes in business needs. Lack of
testing and documentation can also fall into the myopic bucket,
making regressions more difficult to identify and debug.

LIKELY CAUSE

STRATEGIC TECHNICAL DEBT
Sometimes taking on technical debt for strategic and economic reasons is a sensible business

choice. This is largely a result of conscious decisions around needed speed-to-market or plans
to remedy technical debt after meeting a market-imposed (often regulatory in nature) deadline. 

Technical debt here builds up as an outcome of rushed and/or
uncompleted changes and should be dealt with as soon as possible to
mitigate future negative impact.

LIKELY CAUSE

MYOPIC TECHNICAL DEBT
Myopia is another type of technical debt that can take root during initial development of a

major new digital product. When developers or product owners do not look far enough into the
future to realize the type of versatility that will be needed for a feature, the team can often

author short-sighted code that will need to be re-visited later to provide the needed flexibility. 

UNAVOIDABLE TECHNICAL DEBT
A form of technical debt that is usually unpredictable and unpreventable and accrues through no
fault of the team building the product. An example of the “unavoidable” flavor of this kind of
technical debt would be the use of ASP.NET forms just on the brink of Microsoft’s release of the
MVC framework. 

In this case, the developer may have had an idea that a new
standard in .NET client-side development was coming, but within a
small number of years the development community moved away
from ASP.NET and thus the resulting application was laden with
unavoidable technical debt.

LIKELY CAUSE



NOT ALL TECHNICAL DEBT IS BAD

Between the significant costs to teams and users and the impacts on productivity, efficiency,
performance, and morale, it would be easy to assume that technical debt is always the wrong answer.
But sometimes there are sound reasons to plan for the creation of technical debt. There aren’t many,
but a few reasons that do exist are very good ones. 

Strategically allowing or even encouraging the creation of technical debt is a very valid strategy in
certain circumstances. One specific example is a product that is planned to have a short life. Since it’s
not going to live long, it does not have to be built to withstand a strong legacy; we’ll only need to
make debt payments for a very short period of time and then the app will be shut down. In this case it
makes sense to build the product quickly, just good enough to last the short time and then retire it,
along with the debt, as soon as possible. It does not make economic sense to gold-plate a short-term
solution.

The same can be said for a product nearing its end of life. Eric Ries contends that in a Lean world, the
value prototypes bring are to validate theories, give learning, and stir interest/establish the proof of
concept. Since prototypes are intended to be thrown away, this approach is a special case of the
“don’t worry about technical debt for products with a short life”.

A survey of 3350 IT professionals found that 
legacy system integration was the top factor 

slowing down product delivery times.
Source: The State of Application Development, Outsystems, 2019/2020



We once had a client with a key ecommerce project in flight. 

FROM THE TRENCHES: SHORTCUTTING FOR A QUICK RELEASE

Importantly, in the sprint following the launch we came back to the code base,
remedied the shortcuts, and bolstered automated tests so as to not leave behind
technical debt. 

The client’s key industry tradeshow necessitated that we ship the product early to make
the most of the increased visibility and seasonal demand surrounding the show. 

In order to meet the shortened timeline, we took several code shortcuts that we knew
were not a good idea for long-term operation of the software but would hasten
development to the point we would be able to launch just prior to the show. 

As a result, the client captured $500K in revenue that they would have otherwise missed. 
 

Cleaning up the technical debt after main development increased costs
by $5000, but it enabled the client to realize $500K in additional
profits, yielding a huge return on investment while still maintaining the
integrity of the software for the long term.

$5,000

$500,000

One very defensible rationale for intentional technical debt is for a “throwaway prototype.” You may
have significant interest in a big new application but have not quite achieved full budgetary support
to build it in full. You may need a proof of concept for a very reduced budget to determine viability of
the application to solve business problems and to get feedback from potential users. As such, a quick
prototype with non-production tooling, lower-cost staff, and non-enterprise approaches can be
taken to provide the appearance of a near-complete application such that it can be put in front of
customers.

This approach gives the opportunity for very realistic feedback on needed features, the things that
have the most value, and pointers on what the usability should be like. This information can help you
make a better decision on scope and project sponsorship. Then this prototype can be thrown in the
trash and a fully-funded enterprise solution can be developed with these learnings – what you have
learned and benefited from in this process will greatly exceed the cost of the thrown-away prototype.
Whatever you do, do not build upon your rough prototype for the real solution! If you do, you will
enter an entirely unprecedented world of technical pain.



INTEREST PAYMENTS
Technical debt often takes the form of sub-optimal and often rough workarounds within
code that developers have used either out of necessity to meet a deadline or out of a
lack of skill. Every time developers work with your app, every time a support request
comes in, and every time you make small adjustments, your developers will need to make
a hard choice: add to technical debt (making the situation worse) or re-write portions of
the software to unwind the technical debt and make progress. This is completely
analogous to financial debt: either make interest payments on your loan or sink further
into debt.

If your workarounds are working for now, why should you worry about technical debt? Putting an end
to the code smells is alone probably reason enough. But leaving technical debt unattended (even if
everything is working okay today) can saddle your team with huge costs and significant headaches
down the road.

CONSEQUENCES OF TECHNICAL DEBT

INCREASED TIME TO DELIVERY
Predominant technical debt and code rot leads to developer and architect
discussions and in-depth planning to make changes to the code and still deliver
quality product. There will be times when, despite this planning, developers run
into pockets of the code base that are more entrenched in outdated technologies
or unsustainable implementations than expected and the actual timeframe can
stretch out even further.

SIGNIFICANT NUMBER OF DEFECTS
In modern software development, developers and engineers rely on extensive unit,
integration, and functional tests to run during each commit and catch any instances of
regression – times when working on a new feature breaks an old feature. Code bases
with a large extent of technical debt are often absent these kinds of automated tests –
and as a result, regressions occur at a higher rate than normally expected.

As these aspects of the code base build up, there can come a time far enough into the application’s
life in which the application is built up of more workaround code than advisably built professional
code. At this point, developers will spend more time understanding and working around the various
jury rigs than they will contributing to rigorous solutions. Once this happens you are at a tipping
point. It will become completely unpredictable how long code changes and functional additions are
likely to take.



UNDERPERFORMANCE
While we have spent a great bit of time covering the ways in which working with
technical debt-ridden applications makes developer and engineer lives difficult, costly,
and drawn-out, technical debt also poses very real consequences to the users of
applications. Due to antiquated technologies, algorithmic workarounds, and rushed
work, the actual response time, availability, and server/cloud resources of the
application will suffer.

PRODUCT ATROPHY AND DWINDLING TEAM MORALE
Product owners are not interested in working with the software application, and they
avoid activating their teams to work with the application. Thus, rot continues to build. If
teams do still work on paying down the debt (or orchestrating complex workarounds
that rack up even more), they are less motivated as they are often rewarded with buggy
releases, budget overages, and delayed timelines.

DECREASED PREDICTABILITY
Just as developers, engineers and product owners receive constant surprises from
technical debt-ridden software, the business receives less precise signals as to
timeline and cost for maintenance and incremental development. Upper
management and product stakeholders begin to lose faith in the application and
the team as predictability and their ability to make proper business decisions goes
out the window.

DECREASED CUSTOMER SATISFACTION
Rolling together all of the impacts of technical debt above, you’re going to see
customer satisfaction slip. As such you will soon hear from your end users that they
have felt the bite of technical debt.

Bad code costs developers an average of 
4 hours each week, 
which amounts to 

$85 billion annually in lost opportunity costs.
Source: The Developer Coefficient, Stripe, 2018

RISING DEVELOPMENT AND SUPPORT COSTS
Because of the many ways in which high technical debt applications result in
lengthier planning, existing code re-writes and sub-optimal coding approaches, the
time (and associated cost) for in-house staff to work with the application goes up,
along with the cost of frequent out-of-house consulting required at times to
remediate particularly thorny code bases.



If you’re at the point where you can determine that technical debt is having an impact on your
operations, what’s next? Measuring the severity of that impact, especially over time, with monitoring
and assessment tools. 

More than hanging your hate on an arbitrary level of technical debt, make sure you’re using these
tools to watch trends and changes from check-in to check-in. Relative changes from one version of
the code base to another is a more actionable assessment of the degradation or improvement in the
condition of the code.

Here are some of the methods and tools available on the market for this purpose:

SQALE
Software Quality Assessment based on Lifecycle Expectations (SQALE) is an analytical method to
assess a software application’s source code. It is a generic method, independent of the language and
source code analysis tools, that normalizes best practice software development techniques across
languages. A SQALE score is comprised of 8 indices that measure key factors such as code reusability
and changeability, all contributing to an application’s technical debt.

TOOLS TO MEASURE TECHNICAL DEBT

SonarQube
SonarQube is an open-source software implementation of the SQALE tests to yield technical debt
scores for a given code base. At time of writing SonarQube works against the world’s most popular
software languages and platforms including Java, C#, Objective-C, JavaScript and PHP. SonarQube is
most often implemented as part of a continuous deployment pipeline to assess code quality upon
every code commit and build of an application. 

Additionally, an organization can write custom rule sets for SonarQube to apply to put more (or less)
emphasis on particularly problematic types of technical debt their teams are prone to.

STATIC ANALYSIS TOOLS
There are several other software products that are intended to measure many of the factors
contributing to technical debt. Examples include cyclomatic complexity (a measure of the number of
possible routes through your software logic), static analysis (automated review of source code to
identify lacking best practices) and coupling (the extent to which one software routine depends in
turn on another to complete its intent). Software development tools such as Crucible and FxCop are
often implemented to keep a lid on these ill effects.



Figure 1: A sample SonarQube dashboard

Figure 2: A sample snapshot of a quality gate failed by SonarQube



Figure 3: A deeper dive into a SonarQube run that exposed significant technical debt

The question is not so much whether or not you are going to take on technical debt but rather how
quickly, what kind, and what you are going to do about it in the long term. Just like consumer debt,
technical debt will show the magic of compound interest but in reverse – just as small investments to
a 401k over time will build up a nice nest egg for retirement, a bit of technical debt added to
consistently over time will result in a nearly insurmountable pile of technical debt. Taking on a
responsible amount of technical debt and making scheduled payments will keep your leverage low
and still enable you to make those large purchases that are necessary for large product development.

DEALING WITH TECHNICAL DEBT

Technical
Debt

Responsible
Technical Debt

Scheduled
Payments

Large Product
Development

Purchase



Developing software without a concerted long-term quality plan is the fastest road to chaos and
debt. But tragedies of lost productivity and mounting costs can be prevented by building solid
DevOps and Agile principles into the development process. Here are some of the industry standards
that can help keep debt as low as possible: 

DEFINE AND SET COMMON STANDARDS
One of the most important social compacts among a team of application developers is a solid
Definition of Done – a Definition of Done (DoD) is a checklist that enables a team to say that a feature
is shippable. Key elements of a DoD include an agreement on extent and type of tests, acceptable
code style, degree of peer review, amount of documentation, and acceptable frameworks and
versions. A rigorous DoD will make the entire team aware of the level of quality expected of
committed code – and that not meeting the DoD will likely result in incremental technical debt that
will require more work.

PREVENTING UNPLANNED TECHNICAL DEBT

FROM THE TRENCHES: DON’T FORGET THE TESTS
Unit, integration and functional tests are all very important to develop in tandem
with the actual software that drives your released product. Some developers are

versed in Test Driven Development (TDD) and follow it in day-to-day coding.
However, when things get rushed and project deadlines are constrained the

development of tests is often the first thing that is skipped “to save time”. Having
good test coverage, running tests on every code commit and stopping development

until the built-up set of tests pass is a key practice to keep technical debt from
mounting in your software.

COLLABORATE
Pair programming and peer reviews are both highly encouraged Agile methods of vetting the
approaches, consistency, and elegance of code. Both mechanisms enable more senior developers to
mentor apprentice developers and for apprentice developers to make senior developers aware of
new technologies. Having a second pair of eyes and hands on the code base tends to bring down the
level of technical debt since inadvisable code is likely to jump out to someone new to the code who
did not author it.



FROM THE TRENCHES: GREEN STAFF AND NEW TECHNOLOGY PILE ON THE DEBT

Just as you should avoid large levels of debt on high-interest credit cards, developers should strive to
avoid knowingly take on high-interest technical debt. High interest technical debt is the kind of
technical debt that is present in a module that is often modified or depended on by other modules
and is either brittle/difficult to change or throws a lot of exceptions and performance problems.
Rather than having code routines that carry out single operations, we have now spread the debt
throughout the application. It will cost the team money every day as we add features. 

Conversely, those parts of the app that aren’t frequently touched can be prioritized lower, even if
their implementation is particularly poor.

KEEP YOUR PLANNED DEBT RESPONSIBLE

Several years ago we empowered a group of apprentice developers to develop a software
product using what was, at that time, a new release of Microsoft’s Entity Framework. They
were given a lot of leeway to build things with advisable design patterns, and sprint demo
after sprint demo, they delivered and showcased some outstanding product. 

After several months of development, we successfully released to production. Almost
immediately there were problems reported from the field including timeouts and flaky
functional performance. It turns out Entity Framework defaults to “lazy loading” which
the developer did not override–resulting in extremely slow SQL queries and
application performance grinding. 

We stopped new feature development and spent a sprint modifying LINQ queries to load
data directly into Data Transfer Objects which shored up performance. This team can now
develop functionality soundly within the code base.

AUTOMATE WHERE POSSIBLE
There is a practical limit to the amount of pair programming and peer reviews that can be done on an
ongoing basis in most shops. For this reason, MercuryWorks has found automated pipelines with
quality checks to be a reasonable base level proxy and a timesaver to reduce the amount of naïve
technical debt introduced into a product’s code base and increase code consistency. 

Tools like Grunt, Gulp and SonarQube, along with associated code linters, will help point out sloppy
code or approaches counter to the organization’s DoD – and since it is done by a machine upon every
check-in, there is essentially no overhead added to the development effort.



Team members must be empowered and culturally encouraged to clean up a technical mess they
identify while working on adding new features. This debt service should only take place to a
reasonable threshold, though, rather than completely re-factoring and re-implementing a routine
while simultaneously developing the committed new feature. While such refactoring is admirable it’s
not often realistic – do enough to make the situation better and flag any extreme problems as a future
user story in the product backlog.

Which brings us to the topic of “balloon payments.” 

In his book Essential Scrum, Kenneth Rubin warns against the practice of regularly carrying out an
entire sprint for refactoring or technical debt reduction work (a balloon payment) on an application. In
Rubin’s opinion, the regular use of balloon payments subtly encourages the team to accumulate
technical debt, avoid dealing with technical debt as they find it and rather postpone to a concerted
balloon payment sprint (which may never come). This practice can also lead to regressions because
many areas of the solution that were not recently developed are touched in a very short amount of
time during the “bug hunt.”

Instead, Rubin recommends that the team handle technical debt while performing 
client-valuable work within each sprint. One example of doing this is addressing trouble tickets that
come in from the field during a sprint. When technical debt is found to be at the root of the ticket it
should be flagged as such and then the team should determine if can be worked into the current
sprint. 

With consumer debt, a poor enough credit rating will render you unable to buy a new car or finance a
home and remedial credit action is needed to get that new car or home. Such is life with technical debt
in software also. The software team needs to stop new feature development and remove the technical
debt so that not only to return stability to the product but to allow additional features ton be added
without immediate breaks to prior functionality. 

Consider making these kinds of lump sum payments against the software mortgage that is your
technical debt so that the application’s credit rating returns to a reasonable level and typical spending
habits can resume. Know, though, that many experts consider this a “condition critical” move only and
not one that should be leaned on regularly.

At MercuryWorks, we lean on “Uncle Bob” Martin’s method for handling technical debt
inspired by the old Boy Scout rule: “Always leave the campground cleaner than you
found it.” By intentionally improving the environment for the next group of campers
(developers) the team can move into the next sprint knowing that they do not need to
dedicate the first part of the sprint cleaning up a technical mess from the prior sprint.

HOW TO HANDLE TECHNICAL DEBT



MercuryWorks is a leading digital application and professional services firm obsessed with web
applications, native applications, DevOps strategy, and legacy application modernization. For more
than 23 years, MercuryWorks has been providing clients with creative web-based solutions. During
that time, we have designed and developed thousands of web applications and websites to meet our
clients’ diverse and demanding business needs. Our solutions stand the test of time by addressing our
clients’ immediate needs with an eye towards future growth. 

Solutions implemented by Mercury New Media include custom web application design and
development, mobile application development, and an integrated line of business solutions. We
accomplish this through a deep discovery process to determine the most appropriate mix of
technologies, which often include some of the following Mercury New Media areas of expertise:
HTML5, CSS3, RWD, jQuery, Bootstrap, Angular, React, .NET, Azure Web Services, and Microsoft
Power Platform. 

MERCURYWORKS CAN HELP

Have questions regarding your web application’s technical debt 
and what can be done about it? 

Another in-sprint approach is that when a feature is being added or extended to take note of any
technical debt (particularly if it is impeding progress) and refactor or otherwise reduce debt while
constructing the new feature. Not only is this likely to be a more efficient approach but should also
improve the bandwidth committed to thinking about removing the technical debt in the most optimal
fashion.

Finally, another ongoing method to actively reduce technical debt is to write stories and add them to
the overall product backlog on a regular basis and assign a percent of the product budget to address
this identified technical debt. In this way the Product Owner can occasionally work high-priority
technical debt stories into sprint backlogs.

CALL US: 
813.551.3144

EMAIL US: 
INFO@MERCURYWORKS.COM


